国产bbaaaaa片,成年美女黄网站色视频免费,成年黄大片,а天堂中文最新一区二区三区,成人精品视频一区二区三区尤物

首頁(yè)> 外文OA文獻(xiàn) >A count invariant for Lambek calculus with additives and bracket modalities
【2h】

A count invariant for Lambek calculus with additives and bracket modalities

機(jī)譯:具有添加劑和支架形態(tài)的Lambek計(jì)算的計(jì)數(shù)不變量

代理獲取
本網(wǎng)站僅為用戶提供外文OA文獻(xiàn)查詢和代理獲取服務(wù),本網(wǎng)站沒(méi)有原文。下單后我們將采用程序或人工為您竭誠(chéng)獲取高質(zhì)量的原文,但由于OA文獻(xiàn)來(lái)源多樣且變更頻繁,仍可能出現(xiàn)獲取不到、文獻(xiàn)不完整或與標(biāo)題不符等情況,如果獲取不到我們將提供退款服務(wù)。請(qǐng)知悉。

摘要

The count invariance of van Benthem (1991) is that for a sequent to be a theorem of the Lambek calculus, for each atom, the number of positive occurrences equals the number of negative occurrences. (The same is true for\udmultiplicative linear logic.) The count invariance provides for extensive pruning\udof the sequent proof search space. In this paper we generalize count invariance to categorial grammar (or linear logic) with additives and bracket modalities. We define by mutual recursion two counts, minimum count and maximum count, and we prove that if a multiplicative-additive sequent is a theorem, then for every atom, the minimum count is less than or equal to zero and the maximum count is greater than or equal to zero; in the case of a purely multiplicative sequent, minimum count and maximum count coincide in such a way as to together reconstitute the van Benthem count criterion. We then define in the same way a bracket count providing a count check for bracket modalities. This allows for efficient pruning of the sequent proof search space in parsing categorial grammar with additives and bracket modalities.
機(jī)譯:van Benthem(1991)的計(jì)數(shù)不變性是,對(duì)于作為L(zhǎng)ambek微積分定理的一個(gè)序列,對(duì)于每個(gè)原子,正出現(xiàn)的次數(shù)等于負(fù)出現(xiàn)的次數(shù)。 (對(duì)于\ ud乘法線性邏輯也是如此。)計(jì)數(shù)不變性為后續(xù)證明搜索空間提供了廣泛的修剪\ ud。在本文中,我們將計(jì)數(shù)不變性歸納為帶有加法和括號(hào)形式的分類語(yǔ)法(或線性邏輯)。我們通過(guò)相互遞歸來(lái)定義兩個(gè)計(jì)數(shù),最小計(jì)數(shù)和最大計(jì)數(shù),并且證明如果一個(gè)乘加序列是一個(gè)定理,那么對(duì)于每個(gè)原子,最小計(jì)數(shù)小于或等于零,最大計(jì)數(shù)大于或等于零;在純粹相乘的序列中,最小計(jì)數(shù)和最大計(jì)數(shù)重合,以便重新構(gòu)成范本瑟姆計(jì)數(shù)標(biāo)準(zhǔn)。然后,我們以相同的方式定義方括號(hào)計(jì)數(shù),以提供方括號(hào)模態(tài)的計(jì)數(shù)檢查。這允許在解析帶有加法和括號(hào)形式的分類語(yǔ)法時(shí)對(duì)后續(xù)證明搜索空間進(jìn)行有效的修剪。

著錄項(xiàng)

相似文獻(xiàn)

  • 外文文獻(xiàn)
  • 中文文獻(xiàn)
  • 專利
代理獲取

客服郵箱:kefu@zhangqiaokeyan.com

京公網(wǎng)安備:11010802029741號(hào) ICP備案號(hào):京ICP備15016152號(hào)-6 六維聯(lián)合信息科技 (北京) 有限公司?版權(quán)所有
  • 客服微信

  • 服務(wù)號(hào)